

WJEC Wales Physics GCSE SP1.3b: Density

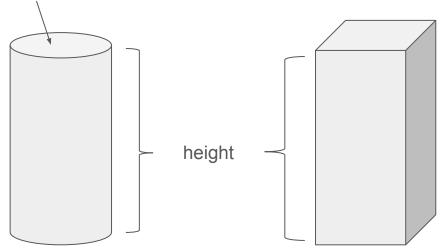
Practical Flashcards

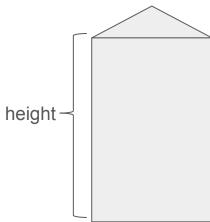
This work by PMT Education is licensed under CC BY-NC-ND 4.0

Part 1: Calculating the density of a regularly shaped object.

- Measure the dimensions of the regular object and calculate the volume.
- 2. Measure the mass of the object.
- 3. Calculate the density from the mass and the volume.

Give the formula for the volume of a prism.





Give the formula for the volume of a prism.

Volume = Area of the face x Height

Area of the face

What equation is used to calculate density?

What equation is used to calculate density?

Density = Mass / Volume

What unit is used for density?

What unit is used for density?

kg/m³

What piece of equipment is used to measure the object's mass? What must you do before using it?

What piece of equipment is used to measure the object's mass? What must you do before using it?

A digital balance, which must be zeroed before use (before the object is placed on it) to prevent a zero error.

How do you convert from g/cm³ to kg/m³?

How do you convert from g/cm³ to kg/m³?

Divide the value by 1000.

Part 2: Calculating the density of a irregularly shaped object.

- 1. Measure the mass of the irregular shape.
- 2. Fill a measuring beaker with water and submerge the object.
- 3. Record the volume of water that has been displaced.
- 4. Calculate the density from the mass and the volume.

How do you calculate the volume that has been displaced?

How do you calculate the volume that has been displaced?

It is equal to the volume of water before the object was submerged minus the volume still in the beaker after it has been submerged.

Part 3: Calculating the density of a liquid.

- 1. Measure the mass of the empty measuring cylinder.
 - 2. Pour 20 cm³ of liquid into the cylinder.
 - 3. Measure the mass of the cylinder with liquid in.
 - 4. Calculate density from mass and volume (20 cm³).

How does the density of solids and liquids compare?

How does the density of solids and liquids compare?

In general, solids are more dense than liquids. The particles in solids are closer together.

